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Abstract. A problem of thin rod longitudinal compression is a classical problem with the long history, but some new results were obtained recently. The bifurcation problem of the rod equilibrium under static compression was solved by L. Euler (1744). Also he found the possible nonlinear modes (the so-called Euler elastics) which rod takes under forces and moments applied to its ends. It has been found out by M.A. Lavrentiev and A.Yu. Ishlinsky (1949) that under the jump loading exceeding the Euler static critical load, the amplitudes of buckling modes with the large number of waves the maximal increase highly under of lateral buckling load. In the recent works of the authors the problem is solved in an assumption on the finite speed of longitudinal wave distribution in the rod. The parametric resonances are studied in the linear and nonlinear statements. It is found that due to these resonances the buckling under the load that is less than the Euler critical load may occur. This problem is examined also in the nonlinear statement. In this case vibrations have the form of beatings with the energy exchange between longitudinal and transversal vibrations whereas in the linear approach instead the amplitude grows unboundedly. We study also the long-term suddenly applied impact load, which exceeds the Euler critical load, and analyze the rod behavior in the initial moments of time while the compression wave does not return after reflection from the opposite rod end. 
1 INTRODUCTION
The classical problem of buckling of a thin rod under axial compression is studied. One should distinguish between the cases of short loading and long-lasting loading. A loading is said to be short provided that the impact time is comparable with the travel time of longitudinal wave along the rod length. It is typical for a short loading that the longitudinal wave run along the rod and reflects many times from its ends. In the linear approximation this wave process can cause parametric resonances with unlimited growth of the transverse vibration. Introducing damping results in a limited vibration amplitude which is nonetheless unrealistically high. To get a realistic picture one utilises a quasi-linear approach in which the longitudinal waves generate transverse vibrations and, in turn, the transverse vibrations affect the longitudinal ones. As a result, the vibrations looks like beats with the energy exchange between longitudinal and transverse vibrations. The beats decay if damping is taken into account. The short impact is beyond the scope of the present paper, cf. [1-5].

The study of long-lasting compression refers to the works by Euler [6], and Lavrentyev and Ishlinsky [7], Volmir [8], Ilgamov [9] and others. The transverse motion of the rod essentially depends on the way of loading, as well as the mechanical model. Euler solved two static problems: (i) in the linear approximation he determined the critical load and possible buckling modes and (ii) in nonlinear approach he determined various equilibrium shapes of the rod loaded at its ends (Euler elastica). Further studies took into account the inertia forces in the rod. The paper by Lavrentyev and Ishlinsky [7] is concerned with the compressive load considerably exceeding the Euler critical load and the highest growth rate of the amplitude of transverse deflection was shown to have a buckling mode with a greater number of waves in the axial direction. The nonlinear dynamic model used in the present paper shows that first the buckling mode predicted by Lavrentyev and Ishlinsky develops and later this modes transforms into a stable Euler elastica. Volmir [8] studied the transverse stability rod at the initial stage of loading under the assumption that the longitudinal compressive wave did not reached the opposite end of the rod. Instability begins if the increasing length of compressed portion of the rod is sufficient for static buckling. Ilgamov [9] investigated the growth of the rod deflection at the initial time instants without propagation of longitudinal waves.
In what follows we discuss the effect of the way of applying a constant longitudinal load on dynamic buckling of a thin rod. In the case of linear statement and a static load that significantly exceeds the critical Euler load the solution coincides with that obtained in [7], the greater rate of the buckling amplitude having one of the higher modes. A geometrically nonlinear analysis is carried out which showed that, at time progresses, the elastic line takes a form of an Euler elastica. This final form essentially depends on the loading and boundary conditions of the rod.

It is shown that the rod can buckle under the suddenly applied axial load which is lower than the Euler force. This buckling can occur only under a constant force suddenly applied at the rod end and is associated with the parametric resonance. In the linear approximation the amplitude grows beyond any bounds. Account for the nonlinear terms leads to appearance of beats with the energy exchange between the longitudinal and transverse vibrations. The influence of the damping force and duration of the leading front of pulse is studied.
2. AXIAL WAVES IN THE ROD
In the linear approximation the propagation of the longitudinal waves in the rod is governed by the equation
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(2.1)
where u(x,t) denotes the axial displacement and с stands for the speed of sound. 

The right end of the rod is fixed and three types of the boundary condition for the left end of the rod (x=0) are shown in Figure 1 where w(x,t) denotes the transverse displacement of the rod.
[image: image2.png]



Figure 1: Three types of the rod under consideration.
The boundary conditions of the left end of the rod for three types of fixing are as follows 
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where 
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 denotes the axial strain. In the case (2.2.1) the rod is compressed by a constant force 
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, where E is Young’s modulus and S is the cross-sectional area. In the case (2.2.2) the rod’s end moves with a constant velocity 
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 and e.g. this case can be realized by means of an axial impact of a heavy body. The last case (2.2.3) implies that both ends of the rod do not move at all. Ignoring for the time being condition (2.2.3) we obtain the solution for the first two boundary conditions under zero initial conditions 
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To investigate the transverse motion we introduce the non-dimensional variables in eq. (2.1) 
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where J and r denote the geometrical moment of inertia and radius of inertia, respectively. In what follows the mark * is omitted. In terms of variables (2.3) the speed of sound is equal to one and the equation of sound (2.1) takes the form 
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We are looking for the strain of axial compression 
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, and the silution of the boundary-value problems (2.4), (2.2.1) and (2.4), (2.2.2) are given by 
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Formulae (2.5.1) and (2.5.2) are actually the Fourier series in terms of the eigen functions of the corresponding boundary-value problems. Functions 
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 are piecewise constant with respect to x for any fixed value of t. In addition to this, for any fixed value of х function 
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. To prove it one can present the solution as a sum of two of traveling waves 
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 and take into account the reflection conditions, namely, displacement 
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 does not change sign under reflection at the fixed end and it changes sign at the free end. 
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Figure 2: Types of the wave reflection. 
3 TRANSVERSE DEFORMATIONS AND VIBRATIONS. SOLUTIONS BY EULER AND LAVRENTIEV – ISHLINSKY

Using the Bernoulli-Euler model for the compressed pinned-pinned beam in terms of variables (2.3) we describe the small transverse vibration by the equation 
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where 
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 stand for the initial and actual deflections, respectively. 

The static problem of buckling of the pinned-pinned beam that was initially compressed by a constant force (
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In particular, for m=1 one obtains the classical Euler critical (buckling) load 
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In the case of a considerably large value of the initial compression strain 
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 the buckling can occur at several first modes, namely, at 
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 where [z] stands for the integer part of number z.
The authors of paper [7] paid attention to the fact that for 
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 the maximum rate of the buckling amplitude corresponds to a higher buckling mode, namely 
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Let us characterize the intensity of growth of the amplitude of m-th buckling mode by parameter 
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. Figure 3 displays the plots 
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 for m=1,2,...,8 and L=500.
Both the maximum intensity of the amplitude growth and the number of the corresponding mode increase with growth of the compression amplitude 
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Figure 3: Parameter of growth of the amplitude of m-th buckling mode 
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The above-said is valid only for small deflections. In what follows we discuss the further change in the rod shape. 

4 EULER ELASTICAS. EVOLUTION OF THE ROD SHAPE AS TIME PROGRESSES

The equilibrium shapes of the buckled rod were first determined by Euler. Under the assumption of inextensible rod these shapes are solutions of the following boundary-value problem 
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Here s is the curvilinear coordinate along the rod axis, 
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 denote the Cartesian coordinates of the rod axis and the angle between the tangent to the rod axis and axis x, cf. Figure 4. 
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Figure 4: Buckled rod.
 Let us introduce the non-dimensional parameter p and coordinates marked by * 
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Omitting * we can rewrite eq. (4.1) in the form
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For 
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 system (4.3) has only the trivial solution. The stable non-trivial solutions are shown in Figure 5 for some values of 
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Figure 5: Euler elastics.
Other Euler elasticas are possible, for example, 
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Let us now consider a nonlinear dynamics problem for extensible rod and use a discrete approach for an approximate solution. In the natural state a straight rod is replaced by a system of n+1 material particles with equal masses M located at the distance 
[image: image61.wmf]n

L

L

/

0

=

 from each other. In the distorted state all particles are located in the same plane and have the Cartesian coordinates 
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where
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Here 
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 is the stretch, 
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 is the distance between the neighboring particles, 
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 are the angles of the segments that connect the adjacent particles. The constants C,D,M are determined in terms of the parameters of homogeneous rod by the relations C = 
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Varying Hamilton’s function 
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 (4.6) 

These equations describe dynamics of the system with 2n-1 degrees of freedom. The terms with the resistance forces proportional to the particle velocity are additionally introduced.

Let us first consider the first type of the boundary conditions in Figure 1 and take the initial conditions under which the rod is uniformly compressed by force 
[image: image73.wmf]0

e

ES

P

=

 and does not move (the Lavrentiev-Ishlinsky approach):
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where 
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 denotes the initial value of the compression strain. To excite lateral vibrations we put 
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We take 
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 and observe three values of the compressive force 
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The simulation results are shown in Figure 6 for the consequent time instants. When 
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 a buckling is possible only according to the first mode (m = 1). The amplitude grows and in the limit coincides with the third Euler elastica number in Figure 5. When 
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 the buckling is possible according to the three first modes (m = 1,2,3) and the growth rates are equal to the values 
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. For this reason we observe a dominating growth of buckling due to mode m = 2. Similarly, when 
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 the buckling is possible due to the four modes when 
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 and the amplitude increase is observed when m = 3. In the cases of 
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 a deformation distortion is observed as time progresses. Point A approaches the motionless point B, passes it and forms a loop (Figure 5).
Let us now consider the third type of boundary conditions in Figure 1. In this case the rod is initially compressed according to the condition (4.7) however point A does not move, hence the system has 2n-2 degrees of freedom and the first equation in (4.6) is discarded. For 
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 the simulation results are displayed in Figure 7. Similar to Figure 6 the buckling first occurs according to the third mode and then then there is a transition to the second and first shape. Finally, the beam takes a form of a stable arch. Note that in the end position the compression force is reduced by 20 times compared with the initial value.
[image: image88.png]



Figure 6: Deflection for the consequent time instants.
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Figure 7: Evolution of the beam deflection for the rod with fixed ends. 

5 BUCKLING UNDER THE LOAD SMALLER THAN THE EULER CRITICAL 

Up to now we considered the axial force that exceeded the Euler critical load. As proved in [11] the dynamic buckling is possible under the suddenly applied continuous longitudinal load which is smaller than the Euler critical load. 
Consider a pinned-pinned rod, see the first graph in Figure 1 and assume that a constant compressive force P is applied at the rod end at the initial time instant. Under these assumptions the wave propagation in the rod has period T=4L, cf. Figure 2.1. The periodic vibration in the rod is described by eq. (3.1) where the axial strain 
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Here 
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 denotes the factor of the viscous resistance and function 
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where functions 
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Here 
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 is the natural frequency of the transverse vibration and depends on strain 
[image: image99.wmf]0

e

, whereas the constant values 
[image: image100.wmf]0

m

w

 are the coefficients of the Fourier series of the initial imperfection 
[image: image101.wmf])

(

0

x

w

. Here we consider the case 
[image: image102.wmf]2

2

0

/

L

cr

p

e

e

=

<

 in which the static buckling does not occur. 

For 
[image: image103.wmf]0

=

d

 functions 
[image: image104.wmf])

(

t

a

mn

 are periodic, that is, 
[image: image105.wmf])

(

)

4

(

t

a

L

t

a

mn

mn

=

+

, and system (5.3) generates a three-parameter set of resonances at 
[image: image106.wmf],...

2

,

1

,

,

,

/

)

(

2

2

2

=

±

=

=

k

n

m

k

n

m

L

L

mnk

p

 The overtone combination resonances are shown in [4] to be excited with much less intensity than the principle resonances. For this reason, we further restrict our consideration to the principle resonances, the latter having the critical length 
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The numerical integration of eq. (5.4) yields the monodromy matrix, characteristic exponents [12] and the instability regions in the plane of parameters 
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The detailed analysis of the instability regions is given in [3-5]. Here we only touch upon a particular issue on existence of the instability regions for 
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Table 1: Parameters of the instability regions.

The table column 
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 demonstrates the influence of damping under the assumption that the damping affects only the transverse vibrations. The calculations were carries out for 
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6 EXAMPLE OF DEVELOPING THE PARAMETRIC VIBRATIONS

Let us consider a rod of length 
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Consider developing parametric vibration for 
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. The amplitude first increases however with time the longitudinal vibration (which is the source of parametric excitation) decays and the solution of eq. (5.4) tends to zero. As a result of numerical integration for different coefficients of resistance we find the maximum value of the amplitude. Table 2 shows the value that indicates how many times the increased amplitude compared with the initial value.
Numerical simulation was used to determine the maximum values of amplitude for various damping factors 
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Table 2: Increase in amplitude for some values of 
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Small damping cannot prevent the development of large transverse vibrations so we proceed to non-linear formulation of the problem. This solution is given in [5] and for this reason we show here only some results.
Nonlinearity is taken into account only in the calculation of axial strain 
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 which relates the longitudinal vibration to the transverse one. An approximate solution is sought in the form
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A nonlinear system of ordinary differential equations is obtained in [5] for unknown functions 
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For numerical work we take 
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Figure 9: Parametric resonance under nonlinear statement. 
Figure 9 shows the resonance amplitude 
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 giving the main part of the longitudinal displacement. In the absence of viscosity, the motion is non-decaying beats manifesting an exchange of energy between axial and bending vibrations. Calculations have shows that the amplitude of beats is weakly dependent on the initial conditions. When 
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 we observe damped beats, with the rate of decay being strongly dependent on the viscosity factor 
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 the maximum amplitude increased by 942 times compared with the initial value, cf, Table 2), while in the non-linear approach the amplitude of beats is independent of the initial conditions. 
It was assumed above that the applied force immediately takes a finite value. Suppose now that 
[image: image159.wmf])

/

(

)

(

0

0

t

e

e

t

th

t

=

 where 
[image: image160.wmf]t

 denotes the duration of leading edge. We consider now the same problem as above for 
[image: image161.wmf]0

=

d

 and a number of values 
[image: image162.wmf]t

. Table 3 shows the maximum values of the beat amplitude 
[image: image163.wmf])

(

max

2

max

2

t

b

b

t

=

.

[image: image164.wmf]0005

.

0

0015

.

0

0025

.

0

0036

.

0

0043

.

0

0045

.

0

5

.

2

2

5

.

1

1

5

.

0

0

max

2

b

t


Table 3: The amplitude of the beats versus the duration of leading edge of a shock pulse. 

We see that the beat amplitude decreases with increase in the duration of the leading edge. Figure 10 shows a graph in function 
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Figure 10: Graph of function 
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7 STABILITY OF THE INITIAL STAGE OF LOADING

Until now we discussed cases in which the axial strain was distributed over the entire length of the rod. In Section 3 this strain is constant along the rod length, whereas in Section 6 longitudinal waves moving along the rod are studied. Here we consider the initial stage of loading where the longitudinal wave has not yet reached the opposite end of the rod, i.e. t<L. Then the equation of transverse vibration (3.1) in terms of variables (2.3) can be written as follows
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where H(z) is Heaviside function (
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At the time instant t the rod portion 
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 is compressed and can buckle according to one or more modes. This problem was studied in [8,13] both analytically and numerically. It is proposed there to stop conditionally the process of longitudinal waves at time instant 
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(7.2)
and taking 
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The solution is given by 
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Inserting into the boundary conditions (7.3) yields the relation between the integration constants 
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(7.5)
This equation has three parameters: 
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Equation (7.5) takes the form 
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 (7.7) Curves 
[image: image190.wmf])

ˆ

(

ˆ

0

t

k

a

 are shown in Fig. 11a for 
[image: image191.wmf]15

ˆ

0

0

£

£

t

. The point of intersection with the abscissa are 
[image: image192.wmf]07

.

14

;

90

.

10

;

72

.

7

;

49

.

4

ˆ

0

=

t

. At 
[image: image193.wmf]49

.

4

ˆ

0

<

t

 the rod is stable. At 
[image: image194.wmf]72

.

7

ˆ

49

.

4

0

<

<

t

 the rod buckles by the first buckling mode, at 
[image: image195.wmf]90

.

10

ˆ

72

.

7

0

<

<

t

 the rod buckles by the two buckling modes etc. 

[image: image196.jpg]0.5 1

Q>

10

0.5¢





Figure 11: Curves 
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 for problem (7.4) (a) and for problem (7.9) (b).
The condition of fixed end at 
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where four continuity conditions are satisfied at the discontinuity point 
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. We see that problem (7.8) leads to an exponential increase in the amplitude at substantially lower values of time than problem (7.3). 
It is clear that the "freezing" of propagation of the longitudinal waves can be used only for an approximate evaluation of behavior of the rod at the initial stage of loading. Therefore we proceed again to eq. (7.1) and seek its solution in the form (5.2). Then for functions 
[image: image204.wmf])

(

t

T

m

 we obtain the system of equations (5.3) which is integrated numerically in what follows.
There exist two ways of disturbing the equilibrium position: (i) perturbation of the initial conditions, cf. [4,5,6,10], by prescribing 
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 in system (5.3) and (ii) or unstressed perturbation of the initially straight rod, cf. [2,3,7,8,9]. From a perspective of development of large deflections under small perturbations both methods yield similar qualitative results however the results vary in the initial time instants.
It is assumed in [9] that 
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, that is, the propagation of longitudinal waves is not taken into account, and the system (5.3) splits into uncoupled equations. In this case, regardless of whether the trivial solution of the homogeneous equation (5.3) is stable or not, the solution behaves as 
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 (similar to Section 3). Coefficients 
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 are compared in [9] under the assumption of the same initial perturbations and it was found out that the maximum rate of growth of functions 
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8 NUMERICAL WORK
 As an example, we consider the rod of the non-dimensional length L = 300 subjected to an axial loading resulting in the axial compressive strain 
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 and the static buckling is possible with the number of half-waves m = 1,2,3,4, with the mode 
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 having the maximum rate of the amplitude growth (see Section 3).

Consider the effect of a local initial deflection of the form
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where parameters 
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 determine the amplitude of the local initial deflection, its position and length, respectively. Because of linearity of the problem we can take A = 1 and all deflections obtained in what follows will be relative displacements. 
Let us take 
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, then local initial deflection occupies one third of the rod length and obtain the numerical solution of problem (5.3) at 
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. Fig. 12 shows the graphs of function w(x,t) obtained by formula (5.2) at successive time instants 
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 is needed for the longitudinal wave to run from one end of the rod to the other). We take four time instants 
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 for analysis. The flexural wave is first “localized” near the left end of the rod and then it propagates along the rod, however “far behind” the longitudinal wave. The amplitude of the bending wave increases. At 
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 the bending amplitude (i.e. the amplitude of the additional deflection) becomes equal to the amplitude of initial deflection. At 
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 the bending amplitude is more than ten times larger than the initial deflection and the deflection shape becomes similar to the fastest growing mode 
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 As time progresses the linear approach is no longer applicable and the evolution of the elastic line follows the scenario described in Sections 4 and 5.
The results of other numerical experiments are as follows. The function w(x,t) is strongly dependent on the shape of initial curvature of the rod 
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, especially at the beginning. A similar conclusion was drawn in [8].
For the suggested statement of the problem, that is, linear elastic deformation and the boundary condition w(0,t)=0, a refined study of the transverse motion at the initial stage is not important from a practical perspective since for some considerable lateral displacement are observed only after several wave reflection from the rod ends. Indeed, in the above example, cf. Fig. 12, the maximal bending deflection 
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 is equal to the amplitude of the initial imperfection only at 
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. The same result is obtained under non-zero initial conditions. To prove it, we assume that the initial deflection is absent and the initial conditions are 
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 where function 
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 is given by eq. (8.1). Then the deflection 
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 decreases first to a value of 0.6 and then it begins to grow and take the initial value 1 only at 
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Figure 12. Rod’s deflection at some time instants 
We took a very small value of compressive strain 
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 which causes no plastic deformation in steel. For large values of 
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 the deflection increases faster however the conclusion on the small bending deflection at the beginning of motion remains in force. For 
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. Presumably, if the rod end x=0 is free in the transverse direction the examination of motion at the initial stage is expected to be more important. 
9 CONCLUSIONS 

· The dynamic buckling of a thin rod subjected to a continuously acting longitudinal load at the initial stage of the movement is studied. If the applied static load significantly exceeds the critical Euler force one of the higher buckling modes has the maximum rate of amplitude growth at the initial stage of the motion. This result is obtained in the framework of a linear statement of the problem. A geometrically nonlinear formulation is required for modeling large transverse deflections. The shape of elastic line of the rod transforms into an Euler elastica with time. Its final form depends essentially on the boundary conditions.
· We established a possibility of appearance of buckling due to a suddenly applied longitudinal load which is smaller than the Euler critical force. This buckling can occur only for the rod length from a certain range and is caused by the parametric resonance. In the linear approximation, the amplitude increases unboundedly while a small resistance leads to a significant increase in the amplitude. Introduction nonlinear terms into consideration results in beats with a energy exchange between longitudinal and transverse vibrations. Account for damping leads to decaying beats.
· The behavior of the rod subjected to a suddenly applied constant longitudinal stress at the initial stage of motion which is limited to the time of run of longitudinal wave along the rod is investigated. In the framework of suggested formulation of the problem (elastic deformation and the left end is fixed in the transverse direction) the buckling results in bending deflection that does not exceed the initial perturbations in the beginning of motion, i.e., consideration of this particular stage of motion is not of practical importance.
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